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In this work, we reanalyze the heart rate variability �HRV� data from the 2002 Computers in Cardiology
�CiC� Challenge using the concept of large-scale dimension densities and additionally apply this technique to
data of healthy persons and of patients with cardiac diseases. The large-scale dimension density �LASDID� is
estimated from the time series using a normalized Grassberger-Procaccia algorithm, which leads to a suitable
correction of systematic errors produced by boundary effects in the rather large scales of a system. This way,
it is possible to analyze rather short, nonstationary, and unfiltered data, such as HRV. Moreover, this method
allows us to analyze short parts of the data and to look for differences between day and night. The circadian
changes in the dimension density enable us to distinguish almost completely between real data and computer-
generated data from the CiC 2002 challenge using only one parameter. In the second part we analyzed the data
of 15 patients with atrial fibrillation �AF�, 15 patients with congestive heart failure �CHF�, 15 elderly healthy
subjects �EH�, as well as 18 young and healthy persons �YH�. With our method we are able to separate
completely the AF ��ls

�=0.97±0.02� group from the others and, especially during daytime, the CHF patients
show significant differences from the young and elderly healthy volunteers �CHF, 0.65±0.13; EH, 0.54±0.05;
YH, 0.57±0.05; p�0.05 for both comparisons�. Moreover, for the CHF patients we find no circadian changes
in �ls

� �day, 0.65±0.13; night, 0.66±0.12; n.s.� in contrast to healthy controls �day, 0.54±0.05; night,
0.61±0.05; p=0.002�. Correlation analysis showed no statistical significant relation between standard HRV
and circadian LASDID, demonstrating a possibly independent application of our method for clinical risk
stratification.
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I. INTRODUCTION

Annually, in the United States up to 450 000 people die
due to sudden cardiac death �1–3�. Therefore, an accurate
and reliable identification of patients who are at high risk for
sudden cardiac death is an important and challenging prob-
lem. In this paper we introduce a measure of complexity
which may help to solve this problem when applied to heart
rate variability �HRV� data. Observational data, such as HRV,
often are rather short and may be noisy. Different data analy-
sis techniques to understand complex processes observed in
nature �4–6� were developed. Linear approaches of time se-
ries analysis are often not sufficient �7,8� and most of the
nonlinear techniques �9,10� suffer from the curse of dimen-
sionality. Mostly, there are not enough points in the �often
nonstationary� time series to reliably estimate these nonlinear
measures. The uncritical application of these methods espe-
cially to natural data, therefore, can be very dangerous and
often lead to serious pitfalls.

To overcome these difficulties, other measures of com-
plexity have been proposed, such as Renyi entropies, effec-
tive measure complexity, � complexity, wavelet analysis, or
renormalized entropy �11–13�. They are mostly based on
symbolic dynamics and are efficient quantities to character-
ize measurements of natural systems, such as in cardiology
�14–16�, cognitive psychology, or astrophysics �17–19�.
These methods are often not sufficient for very short data

sets. For short data sets the method of point correlations has
been introduced �20�, but the dimension is estimated from a
short part of the classical correlation dimension at small
scales where no scaling region can be found for short data
sets. In this paper we focus on another type of measures of
complexity based on the method of large-scale dimension
densities �LASDID� �21� and apply this methodology to
HRV data. The LASDID method allows one to analyze very
short data sets, so it is possible to calculate it for short parts
of the data and get an overview of the changes in the dimen-
sion density in 24 h.

The paper is organized as follows. First, we give a short
overview of the method of large-scale dimension densities.
Next, we describe the data used for this study. Then, we
apply this technique to HRV data and show the ability to
distinguish between real and simulated data. Finally, we ana-
lyze HRV data of atrial fibrillation �AF� patients and conges-
tive heart failure �CHF� patients in comparison to healthy
persons �22�.

II. METHOD OF LARGE-SCALE DIMENSION DENSITIES

The LASDID �21� is estimated with a normalized
Grassberger-Procaccia algorithm, which leads to a suitable
correction of systematic errors produced by boundary effects
in the rather large scales of a system. So it is possible to
analyze rather short and nonstationary data sets.

To calculate the correlation dimension D2 of a system
with the Grassberger-Procaccia algorithm �23� means that the
attractor first has to be reconstructed by embedding. The em-*Electronic address: corinna@agnld.uni-potsdam.de
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bedded time series consists of vectors �x��t�
= (x1�t� ,x2�t� , . . . ,xm�t�)�, where m is the embedding dimen-
sion. Then one has to calculate the correlation integral
C�r ,m� by

C�r,m� =
1

N�N − 1��i�j

�„r − �x��ti� − x��tj��… �1�

where � is the Heaviside function and r is the radius around
each point within which neighboring points are counted for
the correlation sum. D2 is then defined as

D2 = lim
r→0

lim
m→�

�d log C�r,m�/− d log�r�� , �2�

if this limit exists �23�. Because it is impossible to reach the
limit r→0 in numerical calculations, one has to estimate this
dimension from larger distances, i.e., the right hand side of
Eq. �2� becomes a distance-dependent function D2�r ,m�. For
low-dimensional attractors for small r there often exists a
rather large region in log2�r� where this D2�r ,m� is nearly
constant. This part is referred to as the scaling region �23�.
For larger values of r, D2�r ,m� is decreasing because of
boundary effects; for small distances the dimension is fluc-
tuating rather irregularly due to the finite amount of data. It
has been shown that with the growing dimension of the at-
tractor the number of data points needed to reach the scaling
region is increasing exponentially �10,21,24�. If the time se-
ries is too short, one only gets the part of D2�r ,m� with
decreasing values. With the LASDID method we are able to
use this part of D2�r ,m� too.

We have recently introduced the large-scale dimension
density �ls�r ,m� �21� which is defined by normalizing the
dimension density D2�r ,m� /m of all coordinates m of the
embedded system to the dimension density D2�r ,1� of one
coordinate of this system:

�ls�r,m� = D2�r,m�/�mD2�r,1�� . �3�

This normalization is the main point of our approach and
leads to a surprisingly well-expressed plateau for large scales
r yielding an estimate of �ls. In Fig. 1 the normalized curve is
shown and compared with the original Grassberger-
Procaccia algorithm. The large scaling region of the normal-
ized curve enables one to estimate a reliable value of �ls by
averaging all values of this region.

The advantage of the LASDID method is that it is pos-
sible to estimate it from rather short and nonstationary time
series. So we can cut every RR interval time series into M
shorter pieces. The minimum length of these pieces will be
discussed later. To reduce very large RR intervals which
sometimes occur because of measurement errors in the un-
filtered data that we use in the second part of the paper, it is
necessary to transform the data to a Gaussian distribution.
Then, for every one of these short and transformed pieces,
we calculate the large-scale dimension density �ls�r ,m� via
the basic Eq. �3� and estimate �ls from the plateau. This leads
to a time series of �ls�t�. For this time series we calculate
further measures of complexity: the mean value �ls

� by

�ls
� =

1

M
�
i=1

M

�ls�ti� , �4�

the standard deviation �ls
� by

�ls
� =	 1

M − 1�
i=1

M

��ls�ti� − �ls
��2, �5�

and the coefficient of variation �ls
cv by

�ls
cv = �ls

�/�ls
�. �6�

As shown in �21� the large-scale dimension density is de-
creasing with increasing embedding dimension m. But in this
work our main intention is to compare data of different
groups of patients, which means that not the absolute value
of the dimension density is important but the comparison of
them, i.e., here �ls and the derived measures of complexity
�ls

�, �ls
�, and �ls

cv have to be understood as relative measures.
For the calculation of the LASDID we use an embedding
dimension of m=4 and a delay of 	=1. But the results are
qualitatively the same with embedding dimensions m
=4, . . . ,8 and delay times 	=1, . . . ,5. Finally, approxima-
tions of the large-scale dimension m�ls and the large-scale
dimension density �ls are made with embedding dimensions
up to m=200. Group summaries are expressed as mean value

 standard deviation. Statistical analysis was performed via
the Mann-Whitney U test and Pearson correlation coeffi-
cients where appropriate. In all tests, the criterion for statis-
tical significance is p�0.05.

III. DATA

Physiological data very often show complex structures
which cannot be simply described and, therefore, their inter-
pretation is difficult. For the HRV data we are analyzing in

FIG. 1. �Color online� Comparison of LASDID results �solid
line� with the Grassberger-Procaccia algorithm �dashed line� calcu-
lated for HRV data �see section ‘data’ and Fig. 2�. With LASDID
we get a plateau for scales between 1/2 and 1/10 of the attractor
diameter, corresponding to log2�r�=−1 to −3.4. For the calculation
we used only 2000 beat-to-beat intervals, which is not enough to
find a scaling region with the Grassberger-Procaccia algorithm. The
data were embedded with 	=1 and m=4.
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this paper �see Fig. 2�, it is well known that a metronomic
heart rate is pathological—the healthy heart is influenced by
multiple neural and hormonal factors that result in variations
in RR intervals. Even after three decades of study, we are far
from understanding this system and new techniques continue
to reveal properties of the time series of RR intervals. More-
over, the simulation of such time series is still extremely
sophisticated and PhysioNet �25� and Computers in Cardiol-
ogy 2002 organized a challenge to improve the momentary
understanding of cardiovascular regulation. The aim of the
first part of this challenge was to construct simulations of the
RR interval time series spanning a full 24 h with sufficient
verisimilitude to be taken as real. In a second part a blind
classification of a mixed set of real and simulated RR inter-
val time series was performed.

In this paper, we reanalyze the 46 time series from the
second part of this challenge using LASDID to test whether
new information in RR interval variation can be revealed.
Therefore, the first intention of this contribution is to study
whether these types of time series can be discriminated by
LASDID parameters.

The second intention of this paper is to demonstrate a
possible application for risk stratification of cardiac diseases.
Therefore, we analyze the 24 h HRV data of 15 patients with
atrial fibrillation �15 male, age 67±12�, of 15 patients with
congestive heart failure �11 male, 4 female, age 56±11�, of
15 elderly healthy subjects �10 male, 5 female, age 50±9�, as
well as of 18 young healthy persons �13 female, 5 male, age
34±8�. The original 24 h ECG recordings were digitized at
128 samples per second with standard Holter devices, and
the beat annotations were obtained by automated analysis
with manual review and correction. The data of the CHF
patients and the young healthy subjects are available from
Physionet �25�. We calculate LASDID results with the unfil-
tered data and compare it with standard time and frequency
domain parameters as well as parameters based on symbolic
dynamics which have been recently successfully applied to

other cardiological problems �14,26,27�. The following HRV
parameters are calculated from the filtered time series
�28,39�: MeanNN, the mean value of normal beat-to-beat
intervals; sdNN, the standard deviation of intervals between
two normal; Rmssd, the root mean square of successive RR
intervals; and pNN50, the percentage of RR interval differ-
ences greater than 50 ms. Additionally, in the frequency do-
main the normalized low-frequency �LFN�, the ratio LF to
HF, is estimated. Finally, HRV is analyzed by methods of
nonlinear dynamics, especially symbolic dynamics �15,29�:
FWSHANNON, the Shannon entropy of the word distribu-
tion, and POLVAR10, a measure to detect intermittently de-
creased HRV. Finally, we use LASDID methods to estimate
dimensions of HRV data with high embedding dimensions.

IV. RESULTS

A. Separation of real and simulated data

First we use the method of LASDID to compare time
series of real ECG data with those of simulated data �see
Figs. 2�a� and 2�b��. We subdivide every time series into
pieces of an equal amount of heart beats and calculate
�ls�r ,m� �Eq. �3��. After estimating the dimension from the
plateau at large scales, this leads to a time series with fluc-
tuating values �ls�t� which are analyzed by calculating the
mean value �ls

� �Eq. �4��, the standard deviation �ls
� �Eq. �5��,

and the coefficient of variation �ls
cv �Eq. �6��. To find the best

length of the short pieces all calculations have been done
with different amounts of heart beats. For less than 500 heart
beats �ls cannot be calculated reliably. The region of the pla-
teau becomes too short because the part with the fluctuating
values, which usually exists for small scales is shifted to
larger scales and cuts off the plateau. For pieces of 1000
heart beats the plateaus are not cut and we get almost the
same results as with intervals of 2000 heart beats. But for
pieces longer than 2000 heart beats more and more informa-

FIG. 2. �Color online� Representative beat-to-
beat intervals �RR intervals� from simulations
�time series 34 from Computers in Cardiology
challenge 2002� �a�, from a young and healthy
volunteer �b�, from an elderly healthy volunteer
�c�, from a patient with congestive heart failure
�CHF� �d�, as well as from a patient with atrial
fibrillation �AF� �e�.

LARGE-SCALE DIMENSION DENSITIES FOR HEART ¼ PHYSICAL REVIEW E 73, 041907 �2006�

041907-3



tion about the circadian changes gets lost. So the following
calculations are done with 1000 heart beats per piece of RR
interval.

For real data we find values of �ls
� between 0.5 and 0.7,

whereas the simulated data range between 0.4 and 0.9; only
half of the models generated data which also range between
0.5 and 0.7. Values near one indicate a rather stochastic be-
havior of the heart rate; values near zero mean deterministic
heart beats. Furthermore, real data show stronger fluctuations
in the time series of LASDID, i.e., the values of �ls

� are
higher for real data ��ls

� from 0.09 to 0.17 for real data against
�ls

� from 0.02 to 0.11 for simulated data� representing circa-
dian variability changes. The best discrimination result, how-
ever, we get with the coefficient of variation �ls

cv. It makes it
possible to distinguish between real and simulated data by
using only one parameter. Almost all simulated time series
can be detected with this method �see Fig. 3�.

The records of the real data always started and ended in
the morning, so it is possible to distinguish between day and
night. In the following we use the time between 8:00 a.m.
and 1:00 p.m. as the day interval and the time from 1:00 a.m.
to 6:00 a.m. as the night interval. We use intervals of only
5 h length to minimize the risk of test persons having a nap

during the day interval or being awake during the night in-
terval. For real data we find higher values of �ls

� for the night
for most of the records �day, �ls

�=0.546±0.056; night, �ls
�

=0.628±0.069�. According to the Mann-Whitney U test this
difference between day and night is significant �P for day vs
night below 0.001�. But only a few of the simulated data sets
show differences between two different time intervals.

Interestingly, always two data sets of the simulated data
have been generated with the same model. These pairs do not
differ much in �ls

� which enables us to assign the data with
lower �ls

� to a single model. For data with higher �ls
� always

two models come into question �see Fig. 4�.

B. Risk stratification of cardiac diseases

The second intention of this paper was to demonstrate a
possible application of LASDID for risk stratification of car-
diac diseases. Therefore, we compare the data of different
pathologies and healthy subjects. For patients with atrial fi-
brillation we find values of �ls

� near 1, which indicates almost
stochastic heart beats. The coefficient of variation �ls

cv for
these patients is very low �see Fig. 5 and Table I�. This
means that the AF group separates completely from the oth-
ers. Elderly patients with congestive heart failure show
higher values of �ls

cv. The highest values we find for elderly

FIG. 4. �ls
� of the simulated data. Always two data sets have

been generated with the same model and are connected with lines.

FIG. 3. �Color online� A comparison of the coefficients of varia-
tion �ls

cv �Eq. �6�� of real data and simulated data shows higher
values for real data.

FIG. 5. �Color online� Comparison of the coefficient of variation
�ls

cv of patients with atrial fibrillation �AF�, with congestive heart
failure �CHF�, and elderly healthy persons �EH�.

TABLE I. The four different groups of patients are AF �atrial
fibrillation�, CHF �congestive heart failure�, EH �elderly healthy�,
and YH �young healthy�. They have different mean values of �ls

�

�Eq. �4��, �ls
� �Eq. �5��, and �ls

cv �Eq. �6��.

Group �ls
� �ls

� �ls
cv

AF 0.968±0.021 0.023±0.012 0.024±0.013

CHF 0.651±0.125a 0.105±0.027a 0.168±0.053a

EH 0.563±0.042a,b 0.120±0.022a 0.209±0.028a,b

YH 0.606±0.039a,c 0.112±0.016a 0.185±0.021a,c

ap�0.001 vs AF group.
bp�0.05 vs CHF group.
cp�0.05 vs EH group.
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healthy patients �EH� �see Fig. 5 and Table I�. This means
that for elderly persons low values of �ls

cv indicate a higher
risk of heart disease. For young and healthy persons this
value also is low, but not because of heart disease. For the
young and healthy heart the number of degrees of freedom is
larger than for elderly hearts. The degrees of freedom corre-
spond to �ls

�, i.e., �ls
� is decreasing for increasing age �see Fig.

6�. This result agrees with other studies that have found de-
creasing dimensionality of heart beats with age, described by
Goldberger and co-workers, using detrended fluctuation
analysis �30,31� and by Yoshikawa, calculating Lyapunov di-
mensions �32�. �ls

� is inversely proportional to �ls
cv, which

means young persons have lower values of �ls
cv than elderly

persons. On the other hand, CHF patients also have more
degrees of freedom than elderly healthy persons because of
the disease and CHF patients and young healthy persons can-
not be distinguished by �ls

cv and �ls
�, if one analyzes 24 h data

only. But the processes of regulation in the young and
healthy heart and in the hearts of CHF patients are different.
The variability of the healthy heart follows a circadian
rhythm which leads to higher values of �ls

� for the night for
the healthy persons �old and young�. For CHF patients this
rhythm is disturbed so that the values of �ls

� for day and night
are the same �see Table II�. Table II also shows that there is
a significant difference in �ls

� for the day between CHF pa-
tients and elderly or young healthy persons. For risk stratifi-
cation of cardiac diseases it is necessary to take the compari-
son of the different daytimes. Thus, finding no circadian
differences in �ls

� is also a pathological sign.
For standard analyses it is necessary to exclude artifacts

and premature beats from the HRV data to make it for in-

stance possible to estimate spectra reliably. To see, how sen-
sitive the LASDID is to this filtering, we preprocessed �28�
the data and calculated the LASDID again. For healthy per-
sons we find almost no differences in �ls

�, �ls
�, and �ls

cv. For
most of the AF patients �ls

� is decreasing and �ls
cv increasing,

respectively. This means that some of the random processes
in the heart beats of AF patients are filtered out. For most of
the CHF patients we find no differences between filtered and
unfiltered data, but for patient 2, 6, and 15 �ls

� is higher and
�ls

cv is lower for the unfiltered data �CHF2, �ls
�=0.682 vs

0.596; �ls
cv=0.154 vs 0.128; CHF6, �ls

�=0.803 vs 0.720; �ls
cv

=0.099 vs 0.067; CHF15, �ls
�=0.565 vs 0.543; �ls

cv=0.204 vs
0.191.� A closer look at the data shows that these three pa-
tients have lots of ventricular premature beats which make
filtering almost impossible. Because of that also important
HRV information is filtered out by preprocessing and it be-
comes more difficult to separate the CHF patients from the
healthy persons. But, filtering out ventricular premature beats
is not changing the dimensionality of the data. The CHF
patients 3 and 8 also have ventricular premature beats, but
not as much as the other three patients. Here only the ven-
tricular premature beats are filtered and no differences occur
in the results. On the other hand, in the data of patient CHF4
there are lots of errors resulting from technical problems, and
they do not influence the unfiltered results. So it is another
advantage of LASDID that unfiltered data can be used and a
loss of information resulting from preprocessing can be
avoided.

In order to investigate the physiological correlates for the
LASDID results we perform a correlation analysis. Pearson
correlation coefficients between different HRV parameters
and �ls

�, �ls
�, and �ls

cv are given in Table III. Mean heart rate
�inversely related to MeanNN� as well as sdNN, the standard
deviation of the time series, do not correlate with �ls

� and �ls
cv.

For rmssd, the root mean square of successive differences,
however, we see a significant relation to �ls

�, i.e., short-term
respiratory induced oscillation in HRV plays an important
role for LASDID. The highest correlation we find is for the
normalized low-frequency band around 0.1 Hz to �ls

�, dem-
onstrating that the Mayer waves having the strongest influ-
ence for estimating LASDID. Interestingly, �ls

cv did not show
any significant relation to HRV parameters.

FIG. 6. The mean values �ls
� of the large-scale dimension density

time series for healthy persons are decreasing with increasing age of
the persons. This correlation is significant: r=−0.45 and p�0.01.

TABLE II. Comparison of the day and night values of �ls
� for

healthy persons �EH and YH� with patients with congestive heart
failure �CHF�.

Group �ls
� day �ls

� night p �day vs night�

EH 0.54±0.05a 0.61±0.05 0.002

YH 0.57±0.05a 0.67±0.05 �0.001

CHF 0.65±0.13 0.66±0.12 n.s.

ap�0.05 vs CHF group.

TABLE III. Correlation coefficients r �p value� between large-
scale dimension densities and heart rate variability parameters.

�ls
� �ls

� �ls
cv

meanNN 0.053a 0.110a 0.107a

sdNN 2.227a 0.232a 0.152a

rmssd 0.509b 0.276a 0.059a

pNN50 0.510b 0.267a 0.046a

LF/HF −0.607c −0.453b −0.226a

LFn −0.735c −0.461b −0.163a

fwshannon −0.659c −0.261a 0.037a

polvar10 −0.553c −0.353d −0.145a

aNot significant.
bp�0.01.
cp�0.001.
dp�0.05.
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To compare LASDID to correlation dimensions of HRV
data calculated by others, we also estimated �ls for higher
embedding dimensions m up to m=200 with 80 000 heart
beats. For the EH group this value is decreasing from �ls
=0.35 for m=5 to values between �ls=0.018 and �ls=0.056
for m=200. This corresponds to large-scale dimensions m�ls
between 4 and 11 for m=200. This is in accordance with
results of the correlation dimension calculated by Carvajal et
al. �D2=7.5–10.8� �33�, Babloyantz and Destexhe �D2

=5.5–6.3� �34�, Kanters et al. �D2=9.6–10.2� �35�, Govin-
dan et al. �D2=2.8–5.8� �36�, and Guzzetti et al. �D2

=4–7� �37�. The maximal embedding dimension used by
them was about m=20. We could calculate with embedding
dimensions up to m=200 because LASDID needs fewer data
points than the Grassberger-Procaccia algorithm. But we did
not find an upper limit for m�ls, even for m=200 we get
increasing results. As is well known, this could have various
reasons, e.g., stochastic influences, very high-dimensionality,
etc., which are impossible to identify from real data. But this
is not the topic of this paper.

V. CONCLUSIONS

In this paper, we have shown that our method of LASDID
can be used to analyze very short, noinstationary, and unfil-
tered data.

First, we have presented a way of discriminating the 46
simulated and physiological HRV time series from the 2002
Computers in Cardiology challenge �38� using only one pa-
rameter. Next, we have demonstrated its potentials for risk
stratification of cardiac diseases. Patients with atrial fibrilla-
tion showed averaged large-scale dimension densities near to
one and can be completely discriminated from the other
groups. A dimension density near 1 means that atrial fibril-
lation leads to a broad range of random heart beats. The
comparison of the results of LASDID for filtered and unfil-
tered data showed that for this group filtering is senseless,
because too many heart beats are excluded due to their ran-
domness. For the CHF group filtering also sometimes de-
stroys important HRV information, as shown for the patients
with ventricular premature beats. In addition, we have shown
that for the daytime the group of the young and elderly
healthy subjects is statistically different in �ls

� from the con-
gestive heart failure group. Interestingly, considering the
complete 24 h data, only the elderly healthy persons and not
the young healthy volunteers are statistically different from
the CHF group. This is due to the fact that HRV decreases
with age; here the number of modes �ls

� decreases too �see
YH vs EH in Table I and Fig. 6�. In the CHF group �ls

� is
increased compared to elderly healthy subjects. Hence, the
number of independent modes increases due to the disease—
possible explanations are ventricular ectopy or pulsus alter-

nans. For the circadian variation of �ls
cv the same phenomena

can be detected: patients with AF persisting over 24 h do not
show circadian complexity changes, and the young healthy
group is in between the CHF and the elderly healthy group.

Compared to other methods of analyzing RR intervals of
HRV data we only needed one parameter to separate the
simulated and physiological HRV time series from the 2002
Computers in Cardiology challenge. In a previous paper �27�
we used three different parameter for this, we quantified the
distribution of RR intervals, the circadian beat-to-beat vari-
ability as well as the beat-to-beat dynamics. Using cutoffs for
these parameters, both time series groups could be discrimi-
nated completely. The cutoffs were subjectively chosen
based on the knowledge of the normal ranges of the used
parameters. Moreover, it was an act of instinct which param-
eter to choose first. To the best of our knowledge, until today
there was no single parameter for the complete separation of
the considered groups. Using the concept of LASDID, a
nearly perfect classification was performed. Only one of the
simulated time series �no. 4� was falsely classified as a real
one. This time series showed a comparable number of de-
grees of freedom �number of modes� as compared to real
data and this number showed a circadian dependence. The
modes, however, were chosen too rigid—one can easily de-
tect this time series as an artificial one from its frequency
spectrum. The averaged LASDID �ls

�, characterizing the
number of independent modes �the working regulatory cir-
cuits� generating the heart rate data, are statistically different
between real and simulated data. The circadian variation of
the number of independent modes �ls

cv, however, enables a
nearly perfect discrimination between physiological and arti-
ficial data. Real heart rate data are characterized by circadian
variability changes due to different mechanisms. At daytime
there are influences from physical or mental stress or food
intake. In the night, however, you should not have such
effects—but there are also significant differences in HRV
dependent on the sleep stages. No simulation in this database
was able to model all these variability changes.

Finally, looking at the correlation of LASDID to standard
HRV parameters and finding no statistical significant relation
for �ls

cv demonstrates the independence of our approach.
Moreover, the fact that we do not need to filter the data
improves the applicability for clinical risk stratification.
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